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Control of transients in ‘‘lethargic’’ systems

G. L. Lippi, P. A. Porta,* L. M. Hoffer, and H. Grassi
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~Received 29 May 1998; revised manuscript received 7 October 1998!

We introduce a nonfeedback technique for the control of the transition between two steady states in a
dynamical system with two very different time scales. We exploit the phase space properties by applying a
series of discrete constant levels in a control parameter, and are able to control both the delay time and the
height of the overshoot in the system’s response. The results of the numerical integration of a ‘‘paradigmatic’’
model are in good qualitative agreement with experimental results obtained in a ClassB laser.
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PACS number~s!: 05.45.2a, 42.60.Mi
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A wealth of investigation in the past two decades h
yielded a considerable understanding of the properties of
namical systems. However, one aspect of their evolution
been largely ignored: the transition from one state into
other, and the possibility of controlling these transients. O
very recently has a nonlinear control technique for taylor
the evolution between two states of a dynamical system b
proposed@1#.

We consider a ‘‘paradigmatic’’ dynamical system d
scribed by two variables: one slow and one fast. The m
interesting transition, but also the most difficult to control,
the one starting from an initial fixed point where the fa
variable is nearly zero. In these systems, after the bifurca
point is crossed, the representative point in phase sp
moves ‘‘slowly’’ along the unstable manifold and at a lat
time moves away very quickly. This ‘‘fast’’ rate depends o
the time constant of the fast variable and the distance f
the bifurcation point. A standard feedback technique app
to the fast variable would not be able to control such a tr
sition, because initially its value is too small to be measur
and later on it changes too rapidly. Feedback applied to
slow variable is possible, but would not be able to cope w
the fast evolution. Instead, we base our control technique
the features of the phase space and modulate the co
parameter according to a predetermined pattern. We th
fore act directly on the slow variable, producing a custo
ized trajectory in phase space.

This control technique is relatively easy to implement e
perimentally, as we successfully demonstrate on a ClasB
laser@2#. It makes astrong reductionin the transition time
possible in ‘‘lethargic’’ systems, i.e., dynamical system
governed by variables with very different time constants. W
also show that this method canreducethe amplitudeof the
transient overshoot.

Let us consider a dynamical system modeled by two v
ablesX andY, with time scales (2e)21 ande, respectively,
wheree is a small quantity. The dynamics of this system a
determined by
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dX

dt
5

1

2e
~XY2X!, ~1a!

dY

dt
5e@12Y2YuXu21l~t!#, ~1b!

whereX represents a complex variable,Y a real variable,t is
time ~normalized!, and l~t! is the time-dependent contro
parameter. This is a generic model that captures the m
features of many dynamical systems: ClassB lasers @2#,
population dynamics@3#, and ignition reactions@4#. As such,
it does not account for the details of the behavior of any
these systems, but accurately reproduces their general
tures.

Equations~1! have two stationary solutions (Xl50, Yl
511l) and (uXhu25l, Yh51), only one of which is stable
for each value of the control parameter. The exchange
stability occurs forl50, the bifurcation point. A typical
time evolution in response to a sudden variation from a ne
tive to a positive value ofl is shown in Fig. 1~long-dashed
line!.

In what follows, we will discuss the control of the dete
ministic system only. In most ClassB lasers, indeed, noise i
quite small and its influence is only minor. Furthermore,

e-

FIG. 1. Time evolution of Eqs.~1! for a ‘‘controlled’’ transition.
Inset: generic control pattern forN52. l050.9, l251.2, andt1

520. The dotted line shows a reduction in delay with correspo
ingly smaller peak overshoot (l151.25). The solid line shows a
strong reduction in delay time and an increase in the peak ampli
(l151.5). The dashed line is the uncontrolled transition obtain
with a simple square pulse.
R32 ©1999 The American Physical Society
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spection of the model’s properties suggest that noise on
initial conditions is linearly transferred onto the overshoo
amplitude and onto the delay~cf. also @5#!, causing only a
small stochastic spread in the features we are controlling

The generic control scheme consists of a successionN
discrete steps in the control parameter. This corresponds
sequence of fixed points as interim goals, leading the sys
along a customized trajectory which differs from the free
evolving one. We choose

l~t!5l0u~2t0!1(
j 51

N

~l j2l j 21!u~t j 21!, ~2!

where l0 is the initial value,t0 is the time at which the
initial state is abandoned@6#, the control parameter level
l1 . . .N21 and the durations (t j2t j 21) can be chosen arbi
trarily, lN is the final value of the control parameter~we
imposetN→`), andu~t! represents the Heaviside functio
at timet.

For an approximate analytical treatment, we divide
time evolution up into distinct regions@7#. The first region is
made up of those control steps during whichX(t) is negli-
gibly small, and ends att* , whenX(t) reaches an arbitrary
threshold value,Xth . In the second region, the full set o
equations must be integrated. During the overshoot, h
ever,X is very large and we can, in this third region, perfor
an approximate analytical calculation which yields the pe
height,uXmu2.

A general solution of Eqs.~1! for X always negligibly
small can be obtained for each time intervalt j 21,t,t j in
the form

Y~t!5~Yj 212Y`, j !e
2e~t2t j !1Y`, j , ~3!

where

Yj5Y~t j !5~Yj 212Y`, j !e
2e~t j 2t j 21!1Y`, j , ~4!

andY`, j511l j is the asymptotic value.
We choose thel j ’s and t j ’s such thatXth is reached

during theNth step. Using Eq.~3!, we obtain

Y~t* !5~YN212Y`,N!e2e~t* 2tN21!1Y`,N . ~5!

From this point onward, the dynamical evolution of th
system is governed by the full Eqs.~1!. A numerical simu-
lation shows the characteristic sudden growth of theX vari-
able after a certain delay time, followed by an overshoot w
oscillatory relaxation towards the final fixed point~Fig. 1,
long-dashed line!, i.e., a spiraling in phase space.

Following the technique outlined in@7#, whenX is very
large, we can solve Eq.~1b! and write the maximum forX,
at timetm , as

uXmu25uXthu21
1

e2 H Y~t* !211 lnS 1

Y~t* ! D J , ~6!

where we have substitutedY(tm)51 and, as in@7#, have
kept the lowest order@8#. SinceY(t* ) depends on thel j ’s
andt j ’s, we can changeuXmu2 by modifying the heights and
durations of the control steps.
he
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We remark thatXth is arbitrary and uniquely definest* .
SinceX is negligibly small until timet* , we can neglect the
bilinear term in Eq.~1b! and obtain, by formal integration o
Eq. ~1a!,

uXthu25uX~t0!u2 expH 1

e Et0

t*
@Y~t8!21#dt8J , ~7!

which can be solved fort* . Note that sinceY(t8) depends
explicitly on thel j ’s and t j ’s, modifying these values can
causeXth to occur for different values oft* , thus controlling
the delay time.

We now consider specificallyN52 andl1.l2 ~inset of
Fig. 1!. Adding a higher control step forcesY(t) to grow at
a faster rate for a timet1 @Eq. ~3!#, and thereforeXth is
reached at an earlier timet* @Eq. ~7!#. This anticipation of
t* is responsible for a decrease in the delay time for incre
ing l1 or t1 , because the intervaltm2t* only changes a
small amount in comparison to the change int* 2t0 . The
amplitude of the overshoot, Eq.~6!, instead, first decrease
and then increases again. To show this more easily, we
sider short values oft1 (t1!e21) such that the expansion o
Eq. ~4! to first order ine, substituted in Eq.~3!, gives

Y~t* !5Y1@12e~t* 2t1!#1~11l2!e~t* 2t1!. ~8!

Substituting these expressions into Eq.~6!, and searching for
the minimum ofuXmu2 with respect toY1 , we obtain

Y1512l2e~t* 2t1!, ~9!

which determines the value ofY(t1) for the occurrence of
the smallest possible overshoot~for fixed parameters!. Figure
1 shows the time evolution ofuXu2. The dashed and dotte
lines indicate the transitions without control and with nea
optimal control ~for the minimum peak!, respectively. In-
creasingl1 ~or t1) further reduces the delay at the expen
of an increase in the peak height. This situation is shown
the solid line in Fig. 1.

We have performed an experimental verification of t
technique, with two and then three levels of pump, on a l
pressure, flowing gas-mixture, cw electrically pumped C2
laser@9#. A detailed presentation of the experimental featu
can be found in@10#, here we limit ourselves to a brief dis
cussion of the main points. The laser is run in single lon
tudinal and transverse mode, is kept tuned to resonance
all measurements~cf. @9# for details! and is allowed to relax
to the same initial condition between successive repetiti
of the turn-on. The main advantage of this experimental s
tem is the possibility of applying a very fast commutatio
~much faster than the internal time constants! to the current
that flows through the gas and pumps the laser. This
achieved with the help of a fast programmable function g
erator~LeCroy 9100, 5 ns minimum time resolution! and of
a fast summing circuit that drives the low voltage side of t
electronics controlling the laser current. In this way, it
possible to apply a sequence of pumping steps~two or three
for these measurements! to the laser, in close analogy to th
theoretical discussion. Figure 2 shows the evolution of
laser intensity for an uncontrolled transition~dashed line!,
and for a controlled one~solid line!. Since about 100ms are
necessary for the pumping process to take effect in CO2 la-
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sers@11#, we stress the considerable amount of reduction
dynamicaldelay (*50%) that we achieve. We also rema
that the rise time ('1 ms) of the laser intensity (uXu2) would
render a feedback control technique very difficult to imp
ment. The qualitative agreement between our simple p
digm and the experiment confirms the effectiveness of
control method, and the strong reduction in the delay ti
achieved can have important applications.

We have not, however, shown a curve for a two-step c
trolled transition where the peak amplitude is reduced,
cause the reduction is too small~a few percent! to be un-
equivocally identified in a single event without nois
reduction. When ensemble averages are taken, a redu
can be clearly seen, even in this case@12#.

The reason for the overshoot inX comes from the fact
that growth away from theY axis in theX direction, begins
only after Y has crossed 1, at a ratedX/dt;(Y21). How-
ever, ifY.1 whenX is no longer negligible,dX/dt is large,
and the system spirals into the final fixed point via wi
excursions. This point is well illustrated by the phase sp
plot @Fig. 3~a!, dashed line#. In order to produce a much
tighter spiral and reduce the overshoot, we need to appro
X'Xh with dX/dt small ~i.e., Y only slightly larger than 1!.

We achieve this goal by adding a level to our cont
scheme~now N53) with 0,l2,l3,l1 @cf. inset in Fig.
3~a!#. During the intervalt0,t,t1 , Y increases towards
Y`,1 and passesYh51 at t5t8. During t8,t,t1 , X
grows rapidly away fromX50 @dX/dt;Y(t)21#. At t
5t1 , we change the control parameter to a new value:l2
5h.0, h!1. Y(t1).Y`,2 and thereforeY decays towards
its steady state value for this interval: (11l2). At the same
time, dX/dt is positive, but decreasing. By adjustingl2 and
t2 , we can bringX close toXh when Y is close to 1@Fig.
3~b!#. The application of the last step,l3 at t5t2 , signals
the beginning of the spiral, which cannot be completely s
pressed~since the fixed point is a focus!, but whose ampli-
tude is now considerably reduced@Fig. 3~a!#. This can also
be seen from Eq.~6!: the closerY(t* ) is to 1, the smaller the
value of uXmu2.

The reduction in the height of the overshoot comes at
expense of a lengthening oft2 , and therefore of the overa
time delay. In order to achieve a value ofY(t2)511ah,

FIG. 2. Controlled turn-on in a CO2 laser ~experiment!. l0

'0.9, l2'1.2, andt1520ms↔t1520. The solid line (l1'1.5)
shows a strong reduction in delay ('129ms), compared to
'163ms in the absence of control~dashed line!. The dotted-dashed
line marks timet0 . Only the delay to the right of the dotted line
of a dynamical nature~cf. text!.
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with a>1—i.e., an arbitrary but small value aboveY`,2—,
the duration of the second control step,t2 , to lowest ap-
proximation, must be

t25t11
1

e
log

Y1212h

~a21!h
. ~10!

This shows that forh→0 ~ideal transition! this time di-
verges. This time estimate fort2 @Eq. ~10!# does not take
into account the dynamics ofuXu2, and is therefore only valid
for moderately small values ofY1 and forh not too small.

FIG. 3. Phase space plots of Eqs.~1! for N53 ~solid line!, and
for the uncontrolled transitionN51 ~dashed line!. Inset: generic
control pattern forN53. ~a! full picture in linear scale,~b! detail in
logarithmic scale. Parameters:l151.25, t1514, l251.001, t2

580, andl351.1 ~solid line!; l151.1 ~dashed line!. l050.9 for
both.

FIG. 4. Phase space plot of theN53 transition in the laser
~experiment!: The dashed line represents theN51 ~uncontrolled!
case; the solid line, theN53 case. The vertical long-dashed lin
marks the final steady state towards which both transients evo
The ‘‘noisy-looking’’ area at the core of the spiral is due to
gradual increase in intensity superimposed on the usual ‘‘ringin
behavior with which the laser relaxes to the steady state. Par
eters: l0'0.88, l1'1.15, l2'1.02, l3'1.12, t1540ms↔t1

540, andt25160ms↔t25160.
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Figure 4 shows an experimental result with the cont
pattern of Fig. 3~a! ~cf. inset!. A comparison between th
transition without control~dashed line! and with control
~solid line! shows that the spiral amplitude is reduced by
factor of about 2~at the price of an increase in the dela
'220ms in total!. Note that in both of the experimenta
examples, the laser is run far from the bifurcation point,
that noise does not play a strong role. This is not a v
restrictive limitation, since noise is important only in a ve
narrow band around the lasing threshold@9#. The presence o
noise implies, however, that in the (N53) control pattern we
must keepl2 far enough from the bifurcation to keep th
laser from being accidentally driven back to the (Xl ,Yl)
fixed point by a fluctuation. Hence,l2*531023 @9#.

Before concluding, we would like to mention some po
sible applications of this technique to lasers. The double c
trol step (N52) could be very useful in reducing the turn-o
time of semiconductor lasers~also ClassB systems@2#! for
the optimization of data transmission. Given the very h
ni,
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h

speed requirements, our simple technique offers one of
best chances of a successful implementation@14#. However,
its realization requires some further work, since it neces
tates an extremely short rise time for the pump pulse~of the
order of a fraction of a nanosecond! and at present there ar
no commercially available programmable function gene
tors capable of that. On the positive side, the tolerances
the current stability are not very stringent for this techniq
and are not cause of particular concern. The triple (N53)
control pattern, on the other hand, could be very usefu
reducing the peak overshoot, and its potentially destruc
effects, in high power lasers~solid-state, CO2) or fiber am-
plifiers ~all ClassB systems@2#!.

In conclusion, we have shown that a simple, nonfeedb
technique can control the transition between two ste
states in a lethargic system. Experimental results confirm
effectiveness of the method.

We are grateful to A. Politi and J. R. Tredicce for discu
sions and encouragement.
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