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Control of transients in “lethargic” systems
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We introduce a nonfeedback technique for the control of the transition between two steady states in a
dynamical system with two very different time scales. We exploit the phase space properties by applying a
series of discrete constant levels in a control parameter, and are able to control both the delay time and the
height of the overshoot in the system’s response. The results of the numerical integration of a “paradigmatic”
model are in good qualitative agreement with experimental results obtained in aBClassr.
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A wealth of investigation in the past two decades has dx 1
yielded a considerable understanding of the properties of dy- T 2 XY=X), (1)
namical systems. However, one aspect of their evolution has
been largely ignored: the transition from one state into an- dy
other, and the possibility of controlling these transients. Only —=¢€[1-Y=Y|X|2+\(7)], (1b)
very recently has a nonlinear control technique for tayloring dr

the evolution between two states of a dynamical system beevr\‘/herex represents a complex variab¥a real variabler is

proposec{l].. . . - . time (normalized, and \(7) is the time-dependent control
We consider a “paradigmatic” dynamical system de- 5 ameter. This is a generic model that captures the main
_scrlbed_by two \_/arlables: one slow and one fast. The mf’slteatures of many dynamical systems: Claslasers[2],
interesting tra_nsmon, but a_Is_o_the_most dl_fflcult to control, is population dynamicg3], and ignition reactionf4]. As such,
the one starting from an initial fixed point where the fastit does not account for the details of the behavior of any of
variable is nearly zero. In these SyStemS, after the bifurcatioﬂ‘]ese SystemS, but accurately reproduces their general fea-
point is crossed, the representative point in phase spagfres.
moves “slowly” along the unstable manifold and at a later  Equations(1) have two stationary solutionsX(=0, Y,
time moves away very quickly. This “fast” rate depends on =1+\) and (]xh|2=)\, Y,,=1), only one of which is stable
the time constant of the fast variable and the distance fronfor each value of the control parameter. The exchange of
the bifurcation point. A standard feedback technique appliedtability occurs fora =0, the bifurcation point. A typical
to the fast variable would not be able to control such a trantime evolution in response to a sudden variation from a nega-
sition, because initially its value is too small to be measuredtive to a positive value ok is shown in Fig. 1(long-dashed
and later on it changes too rapidly. Feedback applied to théne).
slow variable is possible, but would not be able to cope with In what follows, we will discuss the control of the deter-
the fast evolution. Instead, we base our control technique ofinistic system only. In most Clagslasers, indeed, noise is
the features of the phase space and modulate the contr@dite small and its influence is only minor. Furthermore, in-
parameter according to a predetermined pattern. We there-
fore act directly on the slow variable, producing a custom-
ized trajectory in phase space. ;
This control technique is relatively easy to implement ex- g
perimentally, as we successfully demonstrate on a (Bass-
laser[2]. It makes astrong reductionin the transition time !
possible in “lethargic” systems, i.e., dynamical systems :: A
governed by variables with very different time constants. We J k :' \ '-'_4"\
also show that this method caaducethe amplitudeof the 0 ‘ : AN AR,
transient overshoot. 0 10 20 30 40 50 60
Let us consider a dynamical system modeled by two vari- ©{norm. units)
ablesX ‘?ndY' with t'me_ scales (2) ' a_nd € re;pectlvely, FIG. 1. Time evolution of Eqg1) for a “controlled” transition.
wheree is a small quantity. The dynamics of this system arejnset: generic control pattern foi=2. \o=0.9, \,=1.2, andr,
determined by =20. The dotted line shows a reduction in delay with correspond-
ingly smaller peak overshoot(=1.25). The solid line shows a
strong reduction in delay time and an increase in the peak amplitude
*Present address: Physics Department, National University of Iret\;=1.5). The dashed line is the uncontrolled transition obtained
land, University College, Cork, Ireland. with a simple square pulse.
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spection of the model’s properties suggest that noise on the We remark thai,,, is arbitrary and uniquely defines".
initial conditions islinearly transferred onto the overshoot SinceX is negligibly small until timer*, we can neglect the
amplitude and onto the delagf. also[5]), causing only a bilinear term in Eq(1b) and obtain, by formal integration of
small stochastic spread in the features we are controlling. Eq. (1a),

The generic control scheme consists of a successith of
discrete steps in the control parameter. This corresponds to a
sequence of fixed points as interim goals, leading the system
along a customized trajectory which differs from the freely
evolving one. We choose which can be solved for*. Note that sinceY(7') depends
explicitly on the\;’s and 7;'s, modifying these values can

N causeX;, to occur for different values of*, thus controlling
MO =Nob(—70)+ 2, (\=N-Db(r-1). (2 the delay time.
= We now consider specifically=2 and\ ;>\, (inset of
where \, is the initial value, 7, is the time at which the Fig- . Adding a higher control step forcé() to grow at
initial state is abandonef], the control parameter levels 2 faster rate for a timer, [Eq. (3)], and thereforeX, is
N1, n_1 and the durations#—r; ;) can be chosen arbi- ria_ched at an earlier timeg* [Eq. _(7)]. This ant_|C|pat|o_n of
trarily, Ay is the final value of the control parametave 7 IS responsible for a decrease in the delay time for increas-

imposery— ), and é() represents the Heaviside function INd A1 O 71, because the intervat,—* only changes a
at time 7. small amount in comparison to the changerin—7,. The

For an approximate analytical treatment, we divide the2MPplitude of the overshoot, E¢6), instead, first decreases
time evolution up into distinct regiorid]. The first region is  and then increases again. T915how this more easily, we con-
made up of those control steps during whixfr) is negli- sider short_values of_l (T1<te .) such_ that the expansion of
gibly small, and ends at*, whenX(7) reaches an arbitrary E- (4) to first order ine, substituted in Eq(3), gives
threshold valueX;,. In the second region, the full set of *y o *
equations must be integrated. During the overshoot, how- V() =Yyl e(r =)+ (A4 A e(7 = ). (8)
ever,X is very large and we can, in this third region, perform gypstituting these expressions into E8), and searching for

an approximate analytical calculation which yields the peakne minimum of| X |2 with respect toY;, we obtain
height, |X,|2.

1 (-~
|xth|2=|><<fo>|2exp{;f [Y(r')—l]dr'], @
70

A general solution of Eqs(l) for X always negligibly Yi=1—hye(7* —79), 9)
small can be obtained for each time interval ;<7<7; in . _
the form which determines the value &f(7;) for the occurrence of
the smallest possible overshdéir fixed parametejsFigure
Y(1)=(Yj_1= Y. )e Y, g, (3) 1 shows the time evolution diX|?. The dashed and dotted
lines indicate the transitions without control and with nearly
where optimal control (for the minimum peak respectively. In-
creasing\4 (or 71) further reduces the delay at the expense
Yi=Y(r)=(Yj—1— Y. e i"-U+Y,;, (4  of an increase in the peak height. This situation is shown by
) _ the solid line in Fig. 1.
andY.. ;=1+X; is the asymptotic value. _ We have performed an experimental verification of the
We choose the\;'s and 7j’s such thatX;, is reached technique, with two and then three levels of pump, on a low
during theNth step. Using Eq(3), we obtain pressure, flowing gas-mixture, cw electrically pumped,CO
. laser[9]. A detailed presentation of the experimental features
Y(*)=(Yno1= Yen)€ 7 TNy, (5  can be found if10], here we limit ourselves to a brief dis-

cussion of the main points. The laser is run in single longi-

From this point onward, the dynamical evolution of the tydinal and transverse mode, is kept tuned to resonance for
system is governed by the full Eqdl). A numerical simu- )| measurementé&f. [9] for detail9 and is allowed to relax
lation shows the characteristic sudden growth ofXheari-  to the same initial condition between successive repetitions
able after a certain delay time, followed by an overshoot Wltrbf the turn-on. The main advantage of this experimenta| sys-
oscillatory relaxation towards the final fixed poifiig. 1,  tem is the possibility of applying a very fast commutation
long-dashed ling i.e., a spiraling in phase space. (much faster than the internal time constantsthe current

Following the technique outlined ifv], whenX is very  that flows through the gas and pumps the laser. This is
large, we can solve Eqlb) and write the maximum foK,  achieved with the help of a fast programmable function gen-

at time r,,, as erator(LeCroy 9100, 5 ns minimum time resolutipand of
1 1 a fast summing circuit that drives the low voltage side of the
2_ 2, * *y electronics controlling the laser current. In this way, it is

[ Xl = Xanl*+ € Y(77)=1+In Y(r*)) ] © possible to apply a sequence of pumping stgw® or three

for these measurement® the laser, in close analogy to the
where we have substituted(r,,)=1 and, as in[7], have theoretical discussion. Figure 2 shows the evolution of the
kept the lowest ordef8]. SinceY(7*) depends on tha;’'s laser intensity for an uncontrolled transitidgdashed ling
andr;’s, we can changgX |2 by modifying the heights and and for a controlled onésolid line). Since about 10Qs are
durations of the control steps. necessary for the pumping process to take effect ip @O
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FIG. 2. Controlled turn-on in a CfQlaser (experiment Aq
~0.9, A p,~1.2, andt;=20 us— 7,=20. The solid line {;~1.5)
shows a strong reduction in delay~(29us), compared to
~163us in the absence of contr@ashed ling The dotted-dashed
line marks timer,. Only the delay to the right of the dotted line is
of a dynamical naturécf. texy.
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sers[11], we stress the considerable amount of reduction in o 098 102 104

dynamicaldelay (=50%) that we achieve. We also remark Y (norm. units)
that the rise time41 us) of the laser intensity|¥|2) would
render a feedback control technique very difficult to Imple'for the uncontrolled transitioN=1 (dashed ling Inset: generic

”?e”t' The qualltatlvg agreement between our simple Parg ntrol pattern folN=3. (a) full picture in linear scale(b) detail in
digm and the experiment confirms the effectiveness of th‘?ogarithmic scale. Parameters;=1.25, 7,= 14, A\,=1.001, 7,

conFroI method, anq the strong rgduqtion in the delay time:801 andha=1.1 (solid lin; A, =1.1 (dashed ling A\o=0.9 for
achieved can have important applications. both.

We have not, however, shown a curve for a two-step con-
trolled transition where the peak amplitude is reduced, bewith a=1—i.e., an arbitrary but small value above —,
cause the reduction is too sma# few percentto be un-  the duration of the second control step, to lowest ap-
equivocally identified in a single event without noise proximation, must be
reduction. When ensemble averages are taken, a reduction
can be clearly seen, even in this ca&a]. Yi—1-79

The reason for the overshoot k& comes from the fact (a—1)y
that growth away from th& axis in theX direction, begins
only after Y has crossed 1, at a ratX/d7~(Y—1). How-  This shows that forp—0 (ideal transition this time di-
ever, ifY>1 whenX is no longer negligibleg X/dr is large,  verges. This time estimate far, [Eq. (10)] does not take
and the system spirals into the final fixed point via wideinto account the dynamics 0X|2, and is therefore only valid
excursions. This point is well illustrated by the phase spacéor moderately small values of, and for  not too small.
plot [Fig. 3(@), dashed ling¢ In order to produce a much

FIG. 3. Phase space plots of Eq¥) for N=3 (solid ling), and

1
Ty= T:|_+ zlog (10)

tighter spiral and reduce the overshoot, we need to approach 10 |
X=X, with dX/d7 small(i.e., Y only slightly larger than L o —_——

We achieve this goal by adding a level to our control S ,/ T RN
scheme(now N=3) with 0<\,<\z<\; [cf. inset in Fig. o 2 - N
3(a)]. During the intervalry<7<7y, Y increases towards S \
Y., and passes’,=1 at 7=7'. During 7' <7<r, X - \
grows rapidly away fromiX=0 [dX/d7~Y(7)—1]. At 7 8 0 /
=71, we change the control parameter to a new valug: T —_—
=7>0, n<1.Y(7)>Y.,and thereforer decays towards |
its steady state value for this interval: {2 ,). At the same '50 04 0.05 0.06

time, dX/dr is positive, but decreasing. By adjusting and

75, We can bringX close toXy, whenY is close to 1[Fig.

3(b)]. The application of the last stepg at 7=, signals

the beginning of the spiral, which cannot be completely SUP{ex

press'ec(smce the. fixed point is a fochsbut whpse ampli- case; the solid line, thtl=3 case. The vertical long-dashed line

tude is now considerably reducéBlig. 3(a)]. This can also  5ks the final steady state towards which both transients evolve.

be seen from Eq6): the closerY(7*) is to 1, the smaller the  the “noisy-looking” area at the core of the spiral is due to a

value of |Xp|?. gradual increase in intensity superimposed on the usual “ringing”
The reduction in the height of the overshoot comes at th@ehavior with which the laser relaxes to the steady state. Param-

expense of a lengthening @}, and therefore of the overall eters: Ay=~0.88, A\;~1.15, \,~1.02, A3~1.12, t;=40uS— 7,

time delay. In order to achieve a value ¥{r,)=1+an, =40, andt,=160us~ 7,= 160.

Intensity (V)

FIG. 4. Phase space plot of thé=3 transition in the laser
periment The dashed line represents thNe=1 (uncontrolled
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Figure 4 shows an experimental result with the controlspeed requirements, our simple technique offers one of the
pattern of Fig. 8a) (cf. inse). A comparison between the best chances of a successful implementafibff. However,
transition without control(dashed ling and with control its realization requires some further work, since it necessi-
(solid line) shows that the spiral amplitude is reduced by atates an extremely short rise time for the pump piétdethe
factor of about 2(at the price of an increase in the delay, order of a fraction of a nanoseconahd at present there are
~220us in tota). Note that in both of the experimental N0 commercially available programmable function genera-
examples, the laser is run far from the bifurcation point, sdors capable of that. On the positive side, the tolerances on
that noise does not play a strong role. This is not a ver)Ihe current stability are not very stringent for th|§ technique
restrictive limitation, since noise is important only in a very @1d are not cause of particular concer. The triple=@)
narrow band around the lasing threshi@dl The presence of Control pattern, on the other hand, could be very useful in
noise implies, however, that in thal 3) control patternwe  "€aucing the peak overshoot, and its potentially destructive
must keep\, far enough from the bifurcation to keep the effects, in high power lasersolid-state, C@) or fiber am-

) . . plifiers (all ClassB systemq 2]).
laser from being accidentally driven ba‘*_‘;’ o, (¥1) In conclusion, we have shown that a simple, nonfeedback
fixed point by a fluctuation. Henca,,=5x 10" [9].

. . . techniqgue can control the transition between two steady
Before concluding, we would like to mention some pos-

. o . . states in a lethargic system. Experimental results confirm the
sible applications of this technique to lasers. The double CONsfractiveness of the method.

trol step (N=2) could be very useful in reducing the turn-on
time of semiconductor lasefalso ClassB systemd2]) for We are grateful to A. Politi and J. R. Tredicce for discus-
the optimization of data transmission. Given the very highsions and encouragement.
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